On the Type and Type Product of Dendriform Algebras

نویسنده

  • LI GUO
چکیده

We describe a general framework to define dendriform algebras and a general construction to obtain new dendriform algebra structures from known structures and from linear operators. The construction includes recent constructions of the quadri-algebra, the ennea-algebras, the dendriformNijenhuis algebras and the octo-algebras.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Magnus- and Fer-Type Formula in Dendriform Algebras

We provide a refined approach to the classical Magnus [Mag54] and Fer expansion [F58], unveiling a new structure by using the language of dendriform and pre-Lie algebras. The recursive formula for the logarithm of the solutions of the equations X = 1 + λa ≺ X and Y = 1− λY ≻ a in A[[λ]] is provided, where (A,≺,≻) is a dendriform algebra. Then, we present the solutions to these equations as an i...

متن کامل

Cyclic amenability of Lau product and module extension Banach algebras

Recently, some results have been obtained on the (approximate) cyclic amenability of Lau product of two Banach algebras. In this paper, by characterizing of cyclic derivations on Lau product and module extension Banach algebras, we present general necessary and sufficient conditions for those to be (approximate) cyclic amenable. This not only provides new results on (approximate) cyclic amenabi...

متن کامل

Lie-type higher derivations on operator algebras

 Motivated by the intensive and powerful works concerning additive‎ ‎mappings of operator algebras‎, ‎we mainly study Lie-type higher‎ ‎derivations on operator algebras in the current work‎. ‎It is shown‎ ‎that every Lie (triple-)higher derivation on some classical operator‎ ‎algebras is of standard form‎. ‎The definition of Lie $n$-higher‎ ‎derivations on operator algebras and related pot...

متن کامل

Ennea-algebras 1

A generalisation of a recent work of M. Aguiar and J.-L. Loday on quadri-algebras called tennea-algebras constructed over dendriform trialgebras is proposed. Such algebras allow the construction of nested dendriform trialgebras and are related to pre-Lie algebras, t-infinitesimal bialgebras and tBaxter operators. We also show that the augmented free t-ennea-algebra has a structure of connected ...

متن کامل

New Identities in Dendriform Algebras

Dendriform structures arise naturally in algebraic combinatorics (where they allow, for example, the splitting of the shuffle product into two pieces) and through Rota–Baxter algebra structures (the latter appear, among others, in differential systems and in the renormalization process of pQFT). We prove new combinatorial identities in dendriform dialgebras that appear to be strongly related to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003